Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 466: 133502, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38266586

ABSTRACT

Uranium-stressed soil caused by nuclear industry development and energy acquisition have attracted extensive attentions for a long time. This study investigated the effects of biochar application with different pyrolysis temperatures (300 â„ƒ, 500 â„ƒ and 700 â„ƒ) on remediation of uranium-stressed soil. The results showed that higher pyrolysis temperature (700 â„ƒ) was benefit for ryegrass growing and caused a lower uranium accumulation in plants. At the same time, uranium immobilization was more effective at higher biochar pyrolysis temperature. Careful investigations indicated that activities of soil urease and sucrase were promoted, and bacterial diversity was strengthened in C700 group, which may contribute to uranium immobilization. The biochar application could activate metabolic of lipids and amino acids, organic acids and derivatives, and organic oxygen compounds. Nicotinate and nicotinamide metabolism, and Benzoxazinoid biosynthesis were unique metabolic pathways in the C700 group, which could enhance the uranium tolerance from different perspectives. Based on these results, we recommend to use biochar with 700 °C pyrolysis temperature when processing remediation of uranium-stressed soil. This study will facilitate the implementation of biochar screening and provide theoretical helps for remediation of uranium-stressed soil.


Subject(s)
Soil Pollutants , Uranium , Soil/chemistry , Temperature , Pyrolysis , Charcoal/chemistry , Soil Pollutants/chemistry
2.
J Environ Radioact ; 258: 107090, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36565664

ABSTRACT

As a radioactive heavy metal element with a long half-life, uranium causes environmental pollution when it enters the surrounding soil. This study analyzed the changes about soil enzyme activity, non-targeted metabolomics, microbial community structure and function microbial community structure and function to assess the differences in the effects of uranium stress on rhizosphere and non-rhizosphere soil. Results showed that uranium stress significantly inhibited the activities of urease and sucrase in rhizosphere and non-rhizosphere, which had less effect on rhizosphere. Compare to the non-rhizosphere soil, the uranium stress induced the production of gibberellin A1, to promoted several metabolic pathways, such as nitrogen and PTS (Phosphotransferase system) metabolic in rhizosphere soil. The species and abundance of Aspergillus, Acidobacter, and Synechococcus in both rhizosphere and non-rhizosphere soil were decreased by uranium stress. However, the microorganisms in rhizosphere soil were less inhibited according to the soil metabolism and microbial network map analysis. Furthermore, the Chujaibacter in rhizosphere soil under uranium stress was found significantly positively correlated with lipid and organic oxygen compounds. Overall, the results indicated that ryegrass roots significantly alleviated the effects of uranium stress on soil microbial activity and population abundances, thus playing a protective role. The study also provided a theoretical basis for in-depth understanding of the biological effects, prevention and control mechanisms of uranium-contaminated soil.


Subject(s)
Lolium , Radiation Monitoring , Soil Pollutants , Uranium , Soil/chemistry , DNA, Ribosomal , Soil Pollutants/toxicity , Soil Pollutants/analysis , Soil Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...